首页> 重点归纳 > 考题9-10 2015 AMC 10B

考题9-10 2015 AMC 10B

2018-08-06 重点归纳

AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10的官方真题以及官方解答吧:

Problem 9

The shaded region below is called a shark's fin falcata, a figure studied by Leonardo da Vinci. It is bounded by the portion of the circle of radius $3$ and center $(0,0)$ that lies in the first quadrant, the portion of the circle with radius $\tfrac{3}{2}$ and center $(0,\tfrac{3}{2})$that lies in the first quadrant, and the line segment from $(0,0)$ to $(3,0)$. What is the area of the shark's fin falcata?

[asy] import cse5;pathpen=black;pointpen=black; size(1.5inch); D(MP(

$\textbf{(A) } \dfrac{4\pi}{5} \qquad\textbf{(B) } \dfrac{9\pi}{8} \qquad\textbf{(C) } \dfrac{4\pi}{3} \qquad\textbf{(D) } \dfrac{7\pi}{5} \qquad\textbf{(E) } \dfrac{3\pi}{2}$

Solution

The area of the shark's fin falcata is just the area of the quarter-circle minus the area of the semicircle. The quarter-circle has radius $3$ so it has area $\dfrac{9\pi}{4}$. The semicircle has radius $\dfrac{3}{2}$ so it has area $\dfrac{9\pi}{8}$. Thus, the shaded area is $\dfrac{9\pi}{4}-\dfrac{9\pi}{8}=\boxed{\mathbf{(B)}\ \dfrac{9\pi}{8}}$

Problem 10

What are the sign and units digit of the product of all the odd negative integers strictly greater than $-2015$?

Solution

Since $-5>-2015$, the product must end with a $5$.

The multiplicands are the odd negative integers from $-1$ to $-2013$. There are $\frac{|-2013+1|}2+1=1006+1$ of these numbers. Since $(-1)^{1007}=-1$, the product is negative.

Therefore, the answer must be $\boxed{\text{(\textbf C) It is a negative number ending with a 5.}}$

以上就是小编对AMC10数学竞赛试题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网