首页> 重点归纳 > 考题13-14 2015 AMC 10B

考题13-14 2015 AMC 10B

2018-08-06 重点归纳

AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10的官方真题以及官方解答吧:

Problem 13

The line $12x+5y=60$ forms a triangle with the coordinate axes. What is the sum of the lengths of the altitudes of this triangle?

考题13-14 2015 AMC 10B

Solution

We find the x-intercepts and the y-intercepts to find the intersections of the axes and the line. If $x=0$, then $y=12$. If $y$ is$0$, then $x=5$. Our three vertices are $(0,0)$$(5,0)$, and $(0,12)$. Two of our altitudes are $5$ and $12$, and since it is a 5-12-13 right triangle, the hypotenuse is $13$. Since the area of the triangle is $30$, so our final altitude is $\frac{30(2)}{13}=\frac{60}{13}$. The sum of our altitudes is $\frac{60+156+65}{13}=\boxed{\textbf{(E)} \dfrac{281}{13}}$. Note that there is no need to calculate the final answer after we know that the third altitude has length $\frac{60}{13}$ since $E$ is the only choice with a denominator of $13$.

Problem 14

Let $a$$b$, and $c$ be three distinct one-digit numbers. What is the maximum value of the sum of the roots of the equation $(x-a)(x-b)+(x-b)(x-c)=0$?

考题13-14 2015 AMC 10B

Solution 1

Expanding the equation and combining like terms results in $2x^2-(a+2b+c)x+(ab+bc)=0$. By Vieta's formula the sum of the roots is 考题13-14 2015 AMC 10B. To maximize this expression we want $b$ to be the largest, and from there we can assign the next highest values to $a$ and $c$. So let $b=9$$a=8$, and $c=7$. Then the answer is $\dfrac{8+18+7}{2}=\boxed{\textbf{(D)} 16.5}$.

Solution 2

Factoring out $(x-b)$ from the equation yields 考题13-14 2015 AMC 10B. Therefore the roots are $b$and $\frac{a+c}{2}$. Because $b$ must be the larger root to maximize the sum of the roots, letting $a,b,$ and $c$ be $8,9,$ and $7$ respectively yields the sum $9+\frac{8+7}{2} = 9+7.5 = \boxed{\textbf{(D)}~16.5}$.

Solution 3

There are 2 cases. Case 1 is that $(x-a)(x-b)=0$ and $(x-b)(x-c)=0$. Lets test that 1st. If $x-b=0$, the maximum value for $x$ and $b$ is $9$. Then $b=9$ and $x=9.$ The next highest values are $7$and $8$ so $a=8$ and $c=9$. Therefore, $\frac{18+8+7}{2}= \boxed{\textbf{(D)}~16.5}$.

以上就是小编对AMC10数学竞赛试题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网