首页> 重点归纳 > 考题5-6 2015 AMC 12B

考题5-6 2015 AMC 12B

2018-08-06 重点归纳

AMC12是针对高中学生的数学测验,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。其主要目的在于激发学生对数学的兴趣,参予AMC12的学生应该不难发现测验的问题都很具挑战性,但测验的题型都不会超过学生的学习范围。这项测验希望每个考生能从竞赛中享受数学。那么接下来跟随小编来看一下AMC12官方真题以及官方解答吧:

Problem 5

The Tigers beat the Sharks 2 out of the 3 times they played. They then played $N$ more times, and the Sharks ended up winning at least 95% of all the games played. What is the minimum possible value for $N$?

考题5-6 2015 AMC 12B

Solution

The ratio of the Shark's victories to games played is $\frac{1}{3}$. For $N$ to be at its smallest, the Sharks must win all the subsequent games because $\frac{1}{3} < \frac{95}{100}$. Then we can write the equation

考题5-6 2015 AMC 12B

Cross-multiplying yields $20(1+N)=19(3+N)$, and we find that $N=\fbox{\textbf{(B)}\; 37}$.

Problem 6

Back in 1930, Tillie had to memorize her multiplication facts from $0 \times 0$ to $12 \times 12$. The multiplication table she was given had rows and columns labeled with the factors, and the products formed the body of the table. To the nearest hundredth, what fraction of the numbers in the body of the table are odd?

考题5-6 2015 AMC 12B

Solution

There are a total of $(12+1) \times (12+1) = 169$ products, and a product is odd if and only if both its factors are odd. There are$6$ odd numbers between $0$ and $12$, namely $1, 3, 5, 7, 9, 11,$ hence the number of odd products is $6 \times 6 = 36$. Therefore the answer is $36/169 \doteq \boxed{\textbf{(A)} \, 0.21}$.

以上就是小编对AMC12数学竞赛试题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网