首页> 重点归纳 > 考题19 2015 AMC 12B

考题19 2015 AMC 12B

2018-08-06 重点归纳

AMC12是针对高中学生的数学测验,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。其主要目的在于激发学生对数学的兴趣,参予AMC12的学生应该不难发现测验的问题都很具挑战性,但测验的题型都不会超过学生的学习范围。这项测验希望每个考生能从竞赛中享受数学。那么接下来跟随小编来看一下AMC12官方真题以及官方解答吧:


Problem 19

In $\triangle ABC$$\angle C = 90^\circ$ and $AB = 12$. Squares $ABXY$ and $ACWZ$ are constructed outside of the triangle. The points $X$$Y$$Z$, and $W$ lie on a circle. What is the perimeter of the triangle?

考题19 2015 AMC 12B

Solution 1

First, we should find the center and radius of this circle. We can find the center by drawing the perpendicular bisectors of $WZ$and $XY$ and finding their intersection point. This point happens to be the midpoint of $AB$, the hypotenuse. Let this point be $M$. To find the radius, determine $MY$, where $MY^{2} = MA^2 + AY^2$$MA = \frac{12}{2} = 6$, and $AY = AB = 12$. Thus, the radius $=r =MY = 6\sqrt5$.

Next we let $AC = b$ and $BC = a$. Consider the right triangle $ACB$ first. Using the pythagorean theorem, we find that $a^2 + b^2 = 12^2 = 144$. Next, we let $M'$ be the midpoint of $WZ$, and we consider right triangle $ZM'M$. By the pythagorean theorem, we have that $\left(\frac{b}{2}\right)^2 + \left(b + \frac{a}{2}\right)^2 = r^2 = 180$. Expanding this equation, we get that

\[\frac{1}{4}(a^2+b^2) + b^2 + ab = 180\]考题19 2015 AMC 12B\[b^2 + ab = 144 = a^2 + b^2\]\[ab = a^2\]\[b = a\]

This means that $ABC$ is a 45-45-90 triangle, so $a = b = \frac{12}{\sqrt2} = 6\sqrt2$. Thus the perimeter is 考题19 2015 AMC 12B which is answer $\boxed{\textbf{(C)}\; 12 + 12\sqrt2}$. image needed

Solution 2

The center of the circle on which $X$$Y$$Z$, and $W$ lie must be equidistant from each of these four points. Draw the perpendicular bisectors of $\overline{XY}$ and of $\overline{WZ}$. Note that the perpendicular bisector of $\overline{WZ}$ is parallel to $\overline{CW}$ and passes through the midpoint of $\overline{AC}$. Therefore, the triangle that is formed by $A$, the midpoint of $\overline{AC}$, and the point at which this perpendicular bisector intersects $\overline{AB}$ must be similar to $\triangle ABC$, and the ratio of a side of the smaller triangle to a side of $\triangle ABC$ is 1:2. Consequently, the perpendicular bisector of $\overline{XY}$ passes through the midpoint of $\overline{AB}$. The perpendicular bisector of $\overline{WZ}$ must include the midpoint of $\overline{AB}$ as well. Since all points on a perpendicular bisector of any two points $M$ and $N$ are equidistant from $M$ and $N$, the center of the circle must be the midpoint of $\overline{AB}$.

Now the distance between the midpoint of $\overline{AB}$ and $Z$, which is equal to the radius of this circle, is $\sqrt{12^2 + 6^2} = \sqrt{180}$. Let $a=AC$. Then the distance between the midpoint of $\overline{AB}$ and $Y$, also equal to the radius of the circle, is given by 考题19 2015 AMC 12B (the ratio of the similar triangles is involved here). Squaring these two expressions for the radius and equating the results, we have

考题19 2015 AMC 12B\[144 - a^2 = a\sqrt{144-a^2}\]\[(144-a^2)^2 = a^2(144-a^2)\]

Since $a$ cannot be equal to 12, the length of the hypotenuse of the right triangle, we can divide by $(144-a^2)$, and arrive at $a = 6\sqrt{2}$. The length of other leg of the triangle must be $\sqrt{144-72} = 6\sqrt{2}$. Thus, the perimeter of the triangle is $12+2(6\sqrt{2}) = \boxed{\textbf{(C)}\; 12+12\sqrt{2}}$.

Solution 3

In order to solve this problem, we can search for similar triangles. Begin by drawing triangle $ABC$ and squares $ABXY$ and $ACWZ$. Draw segments $\overline{YZ}$ and $\overline{WX}$. Because we are given points $X$$Y$$Z$, and $W$ lie on a circle, we can conclude that $WXYZ$ forms a cyclic quadrilateral. Take $\overline{AC}$ and extend it through a point $P$ on $\overline{YZ}$. Now, we must do some angle chasing to prove that $\triangle WBX$ is similar to $\triangle YAZ$.

Let $\alpha$ denote the measure of $\angle ABC$. Following this, $\angle BAC$ measures $90 - \alpha$. By our construction, $\overline{CAP}$ is a straight line, and we know $\angle YAB$ is a right angle. Therefore, $\angle PAY$ measures $\alpha$. Also, $\angle CAZ$ is a right angle and thus, $\angle ZAP$ is a right angle. Sum $\angle ZAP$ and $\angle PAY$ to find $\angle ZAY$, which measures $90 + \alpha$. We also know that $\angle WBY$ measures $90 + \alpha$. Therefore, $\angle ZAY = \angle WBX$.

Let $\beta$ denote the measure of $\angle AZY$. It follows that $\angle WZY$ measures $90 + \beta^\circ$. Because $WXYZ$ is a cyclic quadrilateral, $\angle WZY + \angle YXW = 180^\circ$. Therefore, $\angle YXW$ must measure $90 - \beta$, and $\angle BXW$ must measure $\beta$. Therefore, $\angle AZY = \angle BXW$.

$\angle ZAY = \angle WBX$ and $\angle AZY = \angle BXW$, so $\triangle AZY \sim \triangle BXW$! Let $x = AC = WC$. By Pythagorean theorem, $BC = \sqrt{144-x^2}$. Now we have $WB = WC + BC = x + \sqrt{144-x^2}$$BX = 12$$YA = 12$, and $AZ = x$. We can set up an equation:

考题19 2015 AMC 12B\[\frac{12}{x} = \frac{x+\sqrt{144-x^2}}{12}\]\[144 = x^2 + x\sqrt{144-x^2}\]\[12^2 - x^2 = x\sqrt{144-x^2}\]考题19 2015 AMC 12B\[2x^4 - 3(12^2)x^2 + 12^4 = 0\]\[(2x^2 - 144)(x^2 - 144) = 0\]

Solving for $x$, we find that $x = 6\sqrt{2}$ or $x = 12$, which we omit. The perimeter of the triangle is $12 + x + \sqrt{144-x^2}$. Plugging in $x = 6\sqrt{2}$, we get 考题19 2015 AMC 12B.

Solution 4

We claim that $X$$Y$$Z$, and $W$ lie on a circle if $\triangle ACB$ is an isosceles right triangle.

Proof: If $\triangle ACB$ is an isosceles right triangle, then $\angle WAY=180º$. Therefore, $W$$A$, and $Y$ are collinear. Since $WY$ and $YX$ form a right angle, $WX$ is the diameter of the circumcircle of $\triangle WYX$. Similarly, $Z$$A$, and $X$ are collinear, and $ZX$forms a right angle with $ZW$. Thus, $WX$ is also the diameter of the circumcircle of $\triangle WZX$. Therefore, since $\triangle WYX$ and $\triangle WZX$ share a circumcircle, $X$$Y$$Z$, and $W$ lie on a circle if $\triangle ACB$ is an isosceles triangle.

If $\triangle ACB$ is isosceles, then its legs have length $6\sqrt{2}$. The perimeter of $\triangle ACB$ is 考题19 2015 AMC 12B.


以上就是小编对AMC12数学竞赛试题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网