首页> 重点归纳 > 考题19-20 2014 AMC 8

考题19-20 2014 AMC 8

2018-08-04 重点归纳

AMC 8数学竞赛专为8年级及以下的初中学生设计,但近年来的数据显示,越来越多小学4-6年级的考生加入到AMC 8级别的考试行列中,而当这些学生能在成绩中取得“A”类标签,则是对孩子数学天赋的优势证明,不管是对美高申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC 8数学竞赛试题及答案吧:

Problem 19

A cube with $3$-inch edges is to be constructed from $27$ smaller cubes with $1$-inch edges. Twenty-one of the cubes are colored red and $6$are colored white. If the $3$-inch cube is constructed to have the smallest possible white surface area showing, what fraction of the surface area is white?

AMC 8数学竞赛试题及答案

Solution

For the least possible surface area that is white, we should have 1 cube in the center, and the other 5 with only 1 face exposed. This gives 5 square inches of white surface area. Since the cube has a surface area of 54 square inches, our answer is $\textbf{(A) }\frac{5}{54}$.

Problem 20

Rectangle $ABCD$ has sides $CD=3$ and $DA=5$. A circle of radius $1$ is centered at $A$, a circle of radius $2$ is centered at $B$, and a circle of radius $3$ is centered at $C$. Which of the following is closest to the area of the region inside the rectangle but outside all three circles?

AMC 8数学竞赛试题及答案

AMC 8数学竞赛试题及答案

Solution

The area in the rectangle but outside the circles is the area of the rectangle minus the area of all three of the quarter circles in the rectangle.

The area of the rectangle is $3\cdot5 =15$. The area of all 3 quarter circles is AMC 8数学竞赛试题及答案. Therefore the area in the rectangle but outside the circles is $15-\frac{7\pi}{2}$$\pi$ is approximately $\dfrac{22}{7},$ and substituting that in will give $15-11=\boxed{\text{(B) }4.0}$

以上就是小编对AMC 8数学竞赛试题及答案以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网