首页> 重点归纳 > 考题11-12 2015 AMC 10A

考题11-12 2015 AMC 10A

2018-08-06 重点归纳

AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:

Problem 11

The ratio of the length to the width of a rectangle is $4$ : $3$. If the rectangle has diagonal of length $d$, then the area may be expressed as $kd^2$ for some constant $k$. What is $k$?

考题11-12 2015 AMC 10A

Solution

Let the rectangle have length $4x$ and width $3x$. Then by $3-4-5$ triangles (or the Pythagorean Theorem), we have $d = 5x$, and so $x = \dfrac{d}{5}$. Hence, the area of the rectangle is $3x \cdot 4x = 12x^2 = \dfrac{12d^2}{25}$, so the answer is $\boxed{\textbf{(C) }\frac{12}{25}}$

Problem 12

Points $( \sqrt{\pi} , a)$ and $( \sqrt{\pi} , b)$ are distinct points on the graph of $y^2 + x^4 = 2x^2 y + 1$. What is $|a-b|$?

考题11-12 2015 AMC 10A

Solution 1

Since points on the graph make the equation true, substitute $\sqrt{\pi}$ in to the equation and then solve to find $a$ and $b$.

$y^2 + \sqrt{\pi}^4 = 2\sqrt{\pi}^2 y + 1$

考题11-12 2015 AMC 10A

$y^2 - 2\pi y + \pi^2 = 1$

$(y-\pi)^2 = 1$

$y-\pi = \pm 1$

$y = \pi + 1$

$y = \pi - 1$

There are only two solutions to the equation, so one of them is the value of $a$ and the other is $b$. The order does not matter because of the absolute value sign.

$| (\pi + 1) - (\pi - 1) | = 2$

The answer is $\boxed{\textbf{(C) }2}$

Solution 2

This solution is very related to Solution #1 but just simplifies the problem earlier to make it easier.

$y^2 + x^4 = 2x^2 y + 1$ can be written as 考题11-12 2015 AMC 10A. Recognizing that this is a binomial square, simplify this to $(x^2-y)^2=1$. This gives us two equations:

$x^2-y=1$ and $x^2-y=-1$.

One of these $y$'s is $a$ and one is $b$. Substituting $\sqrt{\pi}$ for $x$, we get $a=\pi+1$ and $b=\pi-1$.

So, $|a-b|=|(\pi+1)-(\pi-1)|=2$.

The answer is $\boxed{\textbf{(C) }2}$

以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网