首页> 重点归纳 > 考题13-14 2015 AMC 10A

考题13-14 2015 AMC 10A

2018-08-06 重点归纳

AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:

Problem 13

Claudia has 12 coins, each of which is a 5-cent coin or a 10-cent coin. There are exactly 17 different values that can be obtained as combinations of one or more of her coins. How many 10-cent coins does Claudia have?

考题13-14 2015 AMC 10A


Solution 1

Let Claudia have $x$ 5-cent coins and $\left( 12 - x \right)$ 10-cent coins. It is easily observed that any multiple of $5$ between $5$ and $5x + 10(12 - x) = 120 - 5x$ inclusive can be obtained by a combination of coins. Thus, $24 - x = 17$ combinations can be made, so $x = 7$. But the answer is not $7,$ because we are asked for the number of 10-cent coins, which is $12 - 7 = \boxed{\textbf{(C) } 5}$

Solution 2

Since the coins are 5-cent and 10-cent, all possible values that can be made will be multiples of $5.$ To have exactly $17$ different multiples of $5,$ we will need to make up to $85$ cents. If all twelve coins were 5-cent coins, we will have $60$ cents possible. Each trade of a 5-cent coin for a 10-cent coin will gain $5$ cents, and as we need to gain $25$ cents, the answer is $\boxed{\textbf{(C) } 5}$

For small scale substitutions of 5 cent for 10 cent, like in this problem, it is quite fast, however, if the problem is a little bit more complex, knowing that you need 85 cents, explained above, it is also possible to use a system of equations. It would be 5x+10y=85 x+y=12 Solving this x(5-cent coins)=7 and y(10-cent coins)=5, so again the answer is $\boxed{\textbf{(C) } 5}$

Problem 14


The diagram below shows the circular face of a clock with radius $20$ cm and a circular disk with radius $10$ cm externally tangent to the clock face at $12$ o' clock. The disk has an arrow painted on it, initially pointing in the upward vertical direction. Let the disk roll clockwise around the clock face. At what point on the clock face will the disk be tangent when the arrow is next pointing in the upward vertical direction?

考题13-14 2015 AMC 10A

$\textbf{(A) }\text{2 o' clock} \qquad\textbf{(B) }\text{3 o' clock} \qquad\textbf{(C) }\text{4 o' clock} \qquad\textbf{(D) }\text{6 o' clock} \qquad\textbf{(E) }\text{8 o' clock}$

Solution 1

The circumference of the clock is twice that of the disk. So, a quarter way around the clock (3:00), the point halfway around the disk will be tangent. The arrow will point to the left. We can see the disk made a 75% rotation from 12 to 3, and 3 is 75% of 4, so it would make 100% rotation from 12 to 4. The answer is $\boxed{\textbf{(C) }4 \ \text{o' clock}}$ .

Solution 2

The rotation factor of the arrow is the sum of the rates of the regular rotation of the arrow (360° every 360° rotation = 1) and the rotation of the disk around the clock with twice the circumference (360° every 180° = 2). Thus, the rotation factor of the arrow is 3, and so our answer corresponds to 360°/3 = 120°, which is 4 o' clock. $\boxed{\textbf{(C) 4 o'clock}}$

Solution 3

The arrow travels a path of radius 30 (20 from the interior clock and 10 from the radius of the disk itself). We note that 1 complete rotation of 360 degrees is needed for the arrow to appear up again, so therefore, the disk must travel its circumference before the arrow goes up. Its circumference is $20\pi$, so that is $20\pi$ traveled on a $60\pi$ arrow path. This is a ratio of 1/3, so the angle it carves is 120 degrees, which leads us to the correct answer of 4 o' clock. $\boxed{\textbf{(C)}}$

Solution 4

Suppose that the small disk also had a clock face on it, and that both disks were toothed wheels, free to rotate around their centers. The part of the picture where they engage would look like this:

考题13-14 2015 AMC 10A

The small cog has half the radius, and therefore half the circumference. If the large cog turns $30^\circ$ anticlockwise (i.e. 1 hour), the small cog turns $60^\circ$ clockwise (i.e. 2 hours).

[asy] fill(arc((0,0),2,30,150)--cycle,lightgrey); draw(arc((0,0),2,30,150),EndArcArrow);label("$30^\circ$",2*dir(150),W); draw(1.8*dir(120)--2*dir(120)); draw(1.8*dir(90)--2*dir(90)); label(rotate(30)*"12",1.56*dir(120)); label(rotate(30)*"1",1.56*dir(90));  draw(arc((0,3),1,-15,-165),EndArcArrow);label("$60^\circ$",dir(-165)+(0,3),W); draw(0.9*dir(-90)+(0,3)--dir(-90)+(0,3)); draw(0.9*dir(-120)+(0,3)--dir(-120)+(0,3)); draw(0.9*dir(-150)+(0,3)--dir(-150)+(0,3)); label(rotate(-60)*"6",.74*dir(-150)+(0,3)); label(rotate(-60)*"5",.74*dir(-120)+(0,3)); label(rotate(-60)*"4",.74*dir(-90)+(0,3)); [/asy]

However, in the original problem the large cog does not rotate; it stays where it is. Therefore we must turn the whole diagram above $30^\circ$ clockwise to see what happens when the small cog rolls around it.

[asy] fill(arc((0,0),2,30,150)--cycle,lightgrey); draw(arc((0,0),2,30,150)); draw(1.8*dir(90)--2*dir(90)); draw(1.8*dir(60)--2*dir(60)); label("12",1.56*dir(90)); label("1",1.56*dir(60));  pair c=(1.5,sqrt(27)/2); draw(arc(c,1,0,-200),EndArcArrow);label("$90^\circ$",dir(-180)+c,W); draw(0.9*dir(-120)+c--dir(-120)+c); draw(0.9*dir(-150)+c--dir(-150)+c); draw(0.9*dir(-180)+c--dir(-180)+c); label(rotate(-90)*"6",.74*dir(-180)+c); label(rotate(-90)*"5",.74*dir(-150)+c); label(rotate(-90)*"4",.74*dir(-120)+c); [/asy]

It turns out that, when the point of tangency moves $30^\circ$ clockwise (one hour), from our point of view the small disk rotates $90^\circ$clockwise (three hours) around its center. Thus, for the small disk to perform a complete rotation of $360^\circ$ (twelve hours) around its center from our point of view, the point of tangency must move round four hours. So the answer is $\boxed{\textbf{(C) }\text{4 o' clock}}$

以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网