2018-08-06 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
Consider the set of all fractions , where and are relatively prime positive integers. How many of these fractions have the property that if both numerator and denominator are increased by , the value of the fraction is increased by ?
You can create the equation
Cross multiplying and combining like terms gives .
This can be factored into .
and must be positive, so and , so and .
This leaves the factor pairs: and
But we can't stop here because and must be relatively prime.
gives and . and are not relatively prime, so this doesn't work.
gives and . This doesn't work.
gives and . This does work.
We found one valid solution so the answer is .
The condition required is .
Observe that so is at most
By multiplying by and simplifying we can rewrite the condition as . Since and are integer, this only has solutions for . However, only the first yields a that is relative prime to .
There is only one valid solution so the answer is
If , and , what is the value of ?
Note that we can add the two equations to yield the equation
Moving terms gives the equation
We can also subtract the two equations to yield the equation
Moving terms gives the equation
Because we can divide both sides of the equation by to yield the equation
Substituting this into the equation for that we derived earlier gives
Subtract from the left hand side of both equations, and use difference of squares to yield the equations
and .
It may save some time to find two solutions, and , at this point. However, in these solutions.
Substitute into .
This gives the equation
which can be simplified to
.
Knowing and are solutions is now helpful, as you divide both sides by . This can also be done using polynomial division to find as a factor. This gives
.
Because the two equations and are symmetric, the and values are the roots of the equation, which are and .
Squaring these and adding them together gives
.
By graphing the two equations on a piece of graph paper, we can see that the point where they intersect that is not on the line is close to the point (or ). , and the closest answer choice to is .
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!
上一篇: 考题17-18 2015 AMC 10A
下一篇: AMC考试都适合什么年龄段的学生参加?