2018-08-06 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
Consider the set of all fractions 
, where 
 and 
 are relatively prime positive integers. How many of these fractions have the property that if both numerator and denominator are increased by 
, the value of the fraction is increased by 
?
![]()
You can create the equation ![]()
Cross multiplying and combining like terms gives 
.
This can be factored into 
.
 and 
 must be positive, so 
 and 
, so 
 and 
.
This leaves the factor pairs: 
 
 and ![]()
But we can't stop here because 
 and 
 must be relatively prime.
 gives 
 and 
. 
 and 
 are not relatively prime, so this doesn't work.
 gives 
 and 
. This doesn't work.
 gives 
 and 
. This does work.
We found one valid solution so the answer is 
.
The condition required is 
.
Observe that 
 so 
 is at most ![]()
By multiplying by 
 and simplifying we can rewrite the condition as 
. Since 
 and 
 are integer, this only has solutions for 
. However, only the first yields a 
 that is relative prime to 
.
There is only one valid solution so the answer is ![]()
If 
, and 
, what is the value of 
?
![]()
Note that we can add the two equations to yield the equation
![]()
Moving terms gives the equation
![]()
We can also subtract the two equations to yield the equation
![]()
Moving terms gives the equation
![]()
Because 
 we can divide both sides of the equation by 
 to yield the equation
![]()
Substituting this into the equation for 
 that we derived earlier gives
![]()
Subtract 
 from the left hand side of both equations, and use difference of squares to yield the equations
 and 
.
It may save some time to find two solutions, 
 and 
, at this point. However, 
 in these solutions.
Substitute 
 into 
.
This gives the equation
![]()
which can be simplified to
.
Knowing 
 and 
 are solutions is now helpful, as you divide both sides by 
. This can also be done using polynomial division to find 
 as a factor. This gives
.
Because the two equations 
 and 
 are symmetric, the 
 and 
 values are the roots of the equation, which are 
 and 
.
Squaring these and adding them together gives
.
By graphing the two equations on a piece of graph paper, we can see that the point where they intersect that is not on the line 
 is close to the point 
 (or 
). 
, and the closest answer choice to 
 is 
.
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!
                                            上一篇: 考题17-18 2015 AMC 10A
下一篇: AMC考试都适合什么年龄段的学生参加?