首页> 重点归纳 > 考题20-21 2015 AMC 10A

考题20-21 2015 AMC 10A

2018-08-07 重点归纳

AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:

Problem 20

A rectangle with positive integer side lengths in $\text{cm}$ has area $A$ $\text{cm}^2$ and perimeter $P$ $\text{cm}$. Which of the following numbers cannot equal $A+P$?

考题20-21 2015 AMC 10A

Solution

Let the rectangle's length be $a$ and its width be $b$. Its area is $ab$ and the perimeter is $2a+2b$.

Then $A + P = ab + 2a + 2b$. Factoring, we have 考题20-21 2015 AMC 10A.

The only one of the answer choices that cannot be expressed in this form is $102$, as $102 + 4$ is twice a prime. There would then be no way to express $106$ as $(a + 2)(b + 2)$, keeping $a$ and $b$ as positive integers.

Our answer is then $\boxed{B}$.

Note: The original problem only stated that $A$ and $P$ were positive integers, not the side lengths themselves. This rendered the problem unsolvable, and so the AMC awarded everyone 6 points on this problem. This wiki has the corrected version of the problem so that the 2015 AMC 10A test can be used for practice.

Problem 21

Tetrahedron $ABCD$ has $AB=5$$AC=3$$BC=4$考题20-21 2015 AMC 10A$AD=3$, and $CD=\tfrac{12}5\sqrt2$. What is the volume of the tetrahedron?

考题20-21 2015 AMC 10A

Solution 1

Let the midpoint of $CD$ be $E$. We have $CE = \dfrac{6}{5} \sqrt{2}$, and so by the Pythagorean Theorem $AE = \dfrac{\sqrt{153}}{5}$ and $BE = \dfrac{\sqrt{328}}{5}$. Because the altitude from $A$ of tetrahedron $ABCD$ passes touches plane $BCD$ on $BE$, it is also an altitude of triangle $ABE$. The area $A$ of triangle $ABE$ is, by Heron's Formula, given by

考题20-21 2015 AMC 10ASubstituting $a = AE, b = BE, c = 5$ and performing huge (but manageable) computations yield $A^2 = 18$, so $A = 3\sqrt{2}$. Thus, if $h$ is the length of the altitude from $A$ of the tetrahedron, $BE \cdot h = 2A = 6\sqrt{2}$. Our answer is thus\[V = \dfrac{1}{3} Bh = \dfrac{1}{3} h \cdot BE \cdot \dfrac{6\sqrt{2}}{5} = \dfrac{24}{5},\]and so our answer is $\boxed{\textbf{(C) } \dfrac{24}{5}}$

Solution 2

Drop altitudes of triangle $ABC$ and triangle $ABD$ down from $C$ and $D$, respectively. Both will hit the same point; let this point be $T$. Because both triangle $ABC$ and triangle $ABD$ are 3-4-5 triangles, $CT = DT = \dfrac{3\cdot4}{5} = \dfrac{12}{5}$. Because $CT^{2} + DT^{2} = 2\left(\frac{12}{5}\right)^{2} = \left(\frac{12}{5}\sqrt{2}\right)^{2} = CD^{2}$, it follows that the $CTD$ is a right triangle, meaning that $\angle CTD = 90^\circ$, and it follows that planes $ABC$ and $ABD$ are perpendicular to each other. Now, we can treat $ABC$ as the base of the tetrahedron and $TD$ as the height. Thus, the desired volume is\[V = \dfrac{1}{3} Bh = \dfrac{1}{3}\cdot[ABC]\cdot TD = \dfrac{1}{3} \cdot 6 \cdot \dfrac{12}{5} = \dfrac{24}{5}\]which is answer amc数学竞赛真题

以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网