首页> 重点归纳 > 考题3-4 2015 AMC 12A

考题3-4 2015 AMC 12A

2018-08-22 重点归纳

AMC12是针对高中学生的数学测验,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。其主要目的在于激发学生对数学的兴趣,参予AMC12的学生应该不难发现测验的问题都很具挑战性,但测验的题型都不会超过学生的学习范围。这项测验希望每个考生能从竞赛中享受数学。那么接下来跟随小编来看一下AMC12官方真题以及官方解答吧:

Problem 3

Mr. Patrick teaches math to $15$ students. He was grading tests and found that when he graded everyone's test except Payton's, the average grade for the class was $80$. After he graded Payton's test, the test average became $81$. What was Payton's score on the test?

AMC12数学竞赛试题及答案

Solution

If the average of the first $14$ peoples' scores was $80$, then the sum of all of their tests is $14*80 = 1120$. When Payton's score was added, the sum of all of the scores became $15*81 = 1215$. So, Payton's score must be $1215-1120 = \boxed{\textbf{(E) }95}$


Alternate Solution

The average of a set of numbers is the value we get if we evenly distribute the total across all entries. So assume that the first $14$students each scored $80$. If Payton also scored an $80$, the average would still be $80$. In order to increase the overall average to $81$, we need to add one more point to all of the scores, including Payton's. This means we need to add a total of $15$ more points, so Payton needs $80+15 = \boxed{\textbf{(E) }95}$

Problem 4

The sum of two positive numbers is $5$ times their difference. What is the ratio of the larger number to the smaller number?

$\textbf{(A)}\ \frac{5}{4}\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ \frac{9}{5}\qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \frac{5}{2}$

Solution

Let $a$ be the bigger number and $b$ be the smaller.

$a + b = 5(a - b)$.

Solving gives AMC12数学竞赛试题及答案, so the answer is AMC12数学竞赛试题及答案.

以上就是小编对AMC12数学竞赛试题及答案的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网


2015年AMC数学竞赛12A整套其他真题如下:


AMC数学竞赛12A 01-02   AMC数学竞赛12A 03-04   AMC数学竞赛12A 05-06   AMC数学竞赛12A 07-08

AMC数学竞赛12A 09-10   AMC数学竞赛12A 11-12   AMC数学竞赛12A 13-14   AMC数学竞赛12A 15-16

AMC数学竞赛12A 17-17   AMC数学竞赛12A 18-19   AMC数学竞赛12A 20-20   AMC数学竞赛12A 21-22

AMC数学竞赛12A 23-24   AMC数学竞赛12A 25-25