2018-08-27 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
How many triangles with positive area have all their vertices at points in the coordinate plane, where and are integers between and , inclusive?
We can solve this by finding all the combinations, then subtracting the ones that are on the same line. There are points in all, from to , so is , which simplifies to . Now we count the ones that are on the same line. We see that any three points chosen from and would be on the same line, so is , and there are rows, columns, and long diagonals, so that results in . We can also count the ones with on a diagonal. That is , which is 4, and there are of those diagonals, so that results in . We can count the ones with only on a diagonal, and there are diagonals like that, so that results in . We can also count the ones with a slope of , , , or , with points in each. There are of them, so that results in . Finally, we subtract all the ones in a line from , so we have
For certain real numbers , , and , the polynomialhas three distinct roots, and each root of is also a root of the polynomialWhat is ?
must have four roots, three of which are roots of . Using the fact that every polynomial has a unique factorization into its roots, and since the leading coefficient of and are the same, we know that
where is the fourth root of . Substituting and expanding, we find that
Comparing coefficients with , we see that
(Solution 1.1 picks up here.)
Let's solve for and . Since , , so . Since , , and . Thus, we know that
Taking , we find that
A faster ending to Solution 1 is as follows. We shall solve for only and . Since , , and since , . Then,
We notice that the constant term of and the constant term in . Because can be factored as (where is the unshared root of , we see that using the constant term, and therefore . Now we once again write out in factored form:
.
We can expand the expression on the right-hand side to get:
Now we have .
Simply looking at the coefficients for each corresponding term (knowing that they must be equal), we have the equations:
and finally,
.
We know that is the sum of its coefficients, hence . We substitute the values we obtained for and into this expression to get .
Let and be the roots of . Let be the additional root of . Then from Vieta's formulas on the quadratic term of and the cubic term of , we obtain the following:
Thus .
Now applying Vieta's formulas on the constant term of , the linear term of , and the linear term of , we obtain:
Substituting for in the bottom equation and factoring the remainder of the expression, we obtain:
It follows that . But so
Now we can factor in terms of as
Then and
Hence .
Let the roots of be , , and . Let the roots of be , , , and . From Vieta's, we have:The fourth root is . Since , , and are common roots, we have:Let :Note that This gives us a pretty good guess of .
First off, let's get rid of the term by finding . This polynomial consists of the difference of two polynomials with common factors, so it must also have these factors. The polynomial is , and must be equal to . Equating the coefficients, we get equations. We will tackle the situation one equation at a time, starting the terms. Looking at the coefficients, we get .The solution to the previous is obviously . We can now find and . ,and . Finally ,Solving the original problem, .
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!
AMC竞赛10A 01-02 AMC竞赛10A 03-04 AMC竞赛10A 05-06 AMC竞赛10A 07-08 AMC竞赛10A 09-10
AMC真题10A 11-12 AMC真题10A 13-14 AMC真题10A 15-16 AMC真题10A 17-18 AMC真题10A 19-20
上一篇: AMC数学竞赛真题2017年10A 25
下一篇: AMC考试都适合什么年龄段的学生参加?