首页> 重点归纳 > AMC数学竞赛8真题2016年 23-24

AMC数学竞赛8真题2016年 23-24

2018-08-29 重点归纳

AMC数学竞赛8专为8年级及以下的初中学生设计,但近年来的数据显示,越来越多小学4-6年级的考生加入到AMC 8级别的考试行列中,而当这些学生能在成绩中取得“A”类标签,则是对孩子数学天赋的优势证明,不管是对美高申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC 8的官方真题以及官方解答吧:

Problem 23

Two congruent circles centered at points $A$ and $B$ each pass through the other circle's center. The line containing both $A$ and $B$ is extended to intersect the circles at points $C$ and $D$. The circles intersect at two points, one of which is $E$. What is the degree measure of $\angle CED$?

amc数学竞赛

Solution 1

Drawing the diagram[SOMEONE DRAW IT PLEASE], we see that $\triangle EAB$ is equilateral as each side is the radius of one of the two circles. Therefore, $\overarc{EB}=m\angle EAB-60^\circ$. Therefore, since it is an inscribed angle, $m\angle ECB=\frac{60^\circ}{2}=30^\circ$. So, in amc竞赛$m\angle ECB=m\angle EDA=30^\circ$, and $m\angle CED=180^\circ-30^\circ-30^\circ=120^\circ$. Our answer is $\boxed{\textbf{(C) }\ 120}$.

Solution 2

As in Solution 1, observe that $\triangle{EAB}$ is equilateral. Therefore, $m\angle{AEB}=m\angle{EAB}=m\angle{EBA} = 60^{\circ}$. Since $CD$ is a straight line, we conclude that amc真题. Since $BE=BD$ (both are radii of the same circle), $\triangle{BED}$ is isosceles, meaning that $m\angle{BED}=m\angle{BDE}=30^{\circ}$. Similarly, $m\angle{AEC}=m\angle{ACE}=30^{\circ}$.

Now, amc数学竞赛. Therefore, the answer is $\boxed{\textbf{(C) }\ 120}$.

Problem 24

The digits $1$$2$$3$$4$, and $5$ are each used once to write a five-digit number $PQRST$. The three-digit number $PQR$ is divisible by $4$, the three-digit number $QRS$ is divisible by $5$, and the three-digit number $RST$ is divisible by $3$. What is $P$?

$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad \textbf{(E) }5$

Solution

We see that since $QRS$ is divisible by $5$$S$ must equal either $0$ or $5$, but it cannot equal $0$, so $S=5$. We notice that since $PQR$ must be even, $R$ must be either $2$ or $4$. However, when $R=2$, we see that $T \equiv 2 \pmod{3}$, which cannot happen because $2$ and $5$ are already used up; so $R=4$. This gives $T \equiv 3 \pmod{4}$, meaning $T=3$. Now, we see that $Q$ could be either $1$ or $2$, but $14$ is not divisible by $4$, but $24$ is. This means that $R=4$ and $P=\boxed{\textbf{(A)}\ 1}$.

Solution 2

We know that out of $PQRST$ $QRS$ is divisible by $5$. Therefore $S$ is obviously 5 because $QRS$ is divisible by 5. So we now have $PQR5T$ as our number. Next, lets move on to the second piece of information that was given to us. RST is divisible by 3. So, according to the divisibility of 3 rule the sum of $RST$ has to be a multiple of 3. The only 2 big enough is 9 and 12 and since 5 is already given. The possible sums of $RT$ is 4 and 7. So, the possible values for $R$ are 1,3,4,3 and the possible values of $T$ is 3,1,3,4. So, using this we can move on to the fact that $PQR$ is divisible by 4. So, using that we know that $R$ has to be even so 4 is the only possible value for $R$. Using that we also know that 3 is the only possible value for 3. So, we know have $PQRST$ = $PQ453$ so the possible values are 1 and 2 for $P$ and $Q$. Using the divisibility rule of 4 we know that $QR$ has to be divisible by 4. So, either 14 or 24 are the possibilities, and 24 is divisible by 4. So the only value left for $P$ is 1. $P=\boxed{\textbf{(A)}\ 1}$.

以上就是小编对AMC竞赛官方真题以及解析的介绍,希望对你有所帮助,更多AMC真题下载请持续关注AMC数学竞赛网