2018-08-30 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
A radio program has a quiz consisting of multiple-choice questions, each with choices. A contestant wins if he or she gets or more of the questions right. The contestant answers randomly to each question. What is the probability of winning?
There are two ways the contestant can win.
Case 1: The contestant guesses all three right. This can only happen of the time.
Case 2: The contestant guesses only two right. We pick one of the questions to get wrong, , and this can happen of the time. Thus, = .
So, in total the two cases combined equals = .
Complementary counting is good for solving the problem and checking work if you solved it using the method above.
There are two ways the contestant can lose.
Case 1: The contestant guesses zero questions correctly.
The probability of guessing incorrectly for each question is . Thus, the probability of guessing all questions incorrectly is .
Case 2: The contestant guesses one question correctly. There are 3 ways the contestant can guess one question correctly since there are 3 questions. The probability of guessing correctly is so the probability of guessing one correctly and two incorrectly is .
The sum of the two cases is . This is the complement of what we want to the answer is
The lines with equations and are perpendicular and intersect at . What is ?
Writing each equation in slope-intercept form, we get and . We observe the slope of each equation is and , respectively. Because the slope of a line perpendicular to a line with slope is , we see that because it is given that the two lines are perpendicular. This equation simplifies to .
Because is a solution of both equations, we deduce and . Because we know that , the equations reduce to and . Solving this system of equations, we get
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!
下一篇: AMC考试都适合什么年龄段的学生参加?