首页> 重点归纳 > AMC数学竞赛真题2016年12A 5-6

AMC数学竞赛真题2016年12A 5-6

2018-08-31 重点归纳

AMC12是针对高中学生的数学测验,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。其主要目的在于激发学生对数学的兴趣,参予AMC12的学生应该不难发现测验的问题都很具挑战性,但测验的题型都不会超过学生的学习范围。这项测验希望每个考生能从竞赛中享受数学。那么接下来跟随小编来看一下AMC12官方真题以及官方解答吧:

Problem 5

Goldbach's conjecture states that every even integer greater than 2 can be written as the sum of two prime numbers (for example, $2016=13+2003$). So far, no one has been able to prove that the conjecture is true, and no one has found a counterexample to show that the conjecture is false. What would a counterexample consist of?

美国数学竞赛


Solution

In this case, a counterexample is a number that would prove Goldbach's conjecture false. The conjecture asserts what can be done with even integers greater than 2. Therefore the solution isamc数学竞赛

Problem 6

A triangular array of $2016$ coins has $1$ coin in the first row, $2$ coins in the second row, $3$ coins in the third row, and so on up to $N$ coins in the $N$th row. What is the sum of the digits of $N$?

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

Solution

We are trying to find the value of $N$ such thatamc竞赛Noticing that $\frac{63\cdot 64}{2}=2016,$ we have $N=63,$ so our answer is $\boxed{\textbf{(D) } 9}.$

Notice that we were attempting to solve amc真题. Approximating $N(N+1) \approx N^2$, we were looking for a square that is close to, but less than, $4032$. Since $64^2 = 4096$, we see that $N = 63$ is a likely candidate. Multiplying $63\cdot64$ confirms that our assumption is correct.

以上就是小编对AMC12数学竞赛试题及答案的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网