首页> 重点归纳 > AMC数学竞赛真题2016年12A 17-18

AMC数学竞赛真题2016年12A 17-18

2018-09-01 重点归纳

AMC12是针对高中学生的数学测验,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。其主要目的在于激发学生对数学的兴趣,参予AMC12的学生应该不难发现测验的问题都很具挑战性,但测验的题型都不会超过学生的学习范围。这项测验希望每个考生能从竞赛中享受数学。那么接下来跟随小编来看一下AMC12官方真题以及官方解答吧:

Problem 17

Let $ABCD$ be a square. Let $E, F, G$ and $H$ be the centers, respectively, of equilateral triangles with bases $\overline{AB}, \overline{BC}, \overline{CD},$ and $\overline{DA},$each exterior to the square. What is the ratio of the area of square $EFGH$ to the area of square $ABCD$?

amc真题

Solution

The center of an equilateral triangle is its centroid, where the three medians meet.

The distance along the median from the centroid to the base is one third the length of the median.

Let the side length of the square be $1$. The height of $\triangle E$ is $\frac{\sqrt{3}}{2},$ so the distance from $E$ to the midpoint of $\overline{AB}$ is $\frac{\sqrt{3}}{2} \cdot \frac{1}{3} = \frac{\sqrt{3}}{6}$

$EG = 2 \cdot \frac{\sqrt{3}}{6}$ (from above) $+ 1$ (side length of the square).

Since $EG$ is the diagonal of square $EFGH$amc数学竞赛

Problem 18

For some positive integer $n$, the number $110n^3$ has $110$ positive integer divisors, including $1$ and the number $110n^3$. How many positive integer divisors does the number $81n^4$ have?

美国数学竞赛

Solution 1

Since the prime factorization of $110$ is $2 \cdot 5 \cdot 11$, we have that the number is equal to $2 \cdot 5 \cdot 11 \cdot n^3$. This has $2 \cdot 2 \cdot 2=8$ factors when $n=1$. This needs a multiple of 11 factors, which we can achieve by setting $n=2^3$, so we have $2^{10} \cdot 5 \cdot 11$ has $44$ factors. To achieve the desired $110$ factors, we need the number of factors to also be divisible by $5$, so we can set $n=2^3 \cdot 5$, so $2^{10} \cdot 5^4 \cdot 11$ has $110$ factors. Therefore, $n=2^3 \cdot 5$. In order to find the number of factors of $81n^4$, we raise this to the fourth power and multiply it by $81$, and find the factors of that number. We have $3^4 \cdot 2^{12} \cdot 5^4$, and this has $5 \cdot 13 \cdot 5=\boxed{\textbf{(D) }325}$ factors.

Solution 2

$110n^3$ clearly has at least three distinct prime factors, namely 2, 5, and 11.

The number of factors of $p_1^{n_1}\cdots p_k^{n_k}$ is amc 真题 when the $p$'s are distinct primes. This tells us that none of these factors can be 1. The number of factors is given as 110. The only way to write 110 as a product of at least three factors without $1$s is $2\cdot 5\cdot 11$.

We conclude that $110n^3$ has only the three prime factors 2, 5, and 11 and that the multiplicities are 1, 4, and 10 in some order. I.e., there are six different possible values of $n$ all of the form $n=p_1\cdot p_2^3$.

$81n^4$ thus has prime factorization $81n^4=3^4\cdot p_1^4\cdot p_2^{12}$ and a factor count of $5\cdot5\cdot13=\boxed{\textbf{(D) }325}$

以上就是小编对AMC12数学竞赛试题及答案的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网