首页> 重点归纳 > AMC数学竞赛真题2016年12B 1-2

AMC数学竞赛真题2016年12B 1-2

2018-09-04 重点归纳

AMC12是针对高中学生的数学测验,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。其主要目的在于激发学生对数学的兴趣,参予AMC12的学生应该不难发现测验的问题都很具挑战性,但测验的题型都不会超过学生的学习范围。这项测验希望每个考生能从竞赛中享受数学。那么接下来跟随小编来看一下AMC12官方真题以及官方解答吧:

Problem 1

What is the value of $\frac{2a^{-1}+\frac{a^{-1}}{2}}{a}$ when AMC数学竞赛?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \frac{5}{2}\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20$

Solution

By: Dragonfly

We find that $a^{-1}$ is the same as $2$, since a number to the power of $-1$ is just the reciprocal of that number. We then get the equation to be

$\frac{2\times2+\frac{2}{2}}{\frac{1}{2}}$

We can then simplify the equation to get amc竞赛

Problem 2

The harmonic mean of two numbers can be calculated as twice their product divided by their sum. The harmonic mean of $1$ and $2016$ is closest to which integer?

美国数学竞赛

Solution

By: dragonfly

Since the harmonic mean is $2$ times their product divided by their sum, we get the equation

$\frac{2\times1\times2016}{1+2016}$

which is then

$\frac{4032}{2017}$

which is finally closest to amc真题.

以上就是小编对AMC12数学竞赛试题及答案的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网