首页> 重点归纳 > AMC数学竞赛真题2016年12B 3-4

AMC数学竞赛真题2016年12B 3-4

2018-09-05 重点归纳

AMC12是针对高中学生的数学测验,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。其主要目的在于激发学生对数学的兴趣,参予AMC12的学生应该不难发现测验的问题都很具挑战性,但测验的题型都不会超过学生的学习范围。这项测验希望每个考生能从竞赛中享受数学。那么接下来跟随小编来看一下AMC12官方真题以及官方解答吧:

Problem 3

Let $x=-2016$. What is the value of $\bigg|$ amc数学竞赛 $\bigg|$ $-x$?

$\textbf{(A)}\ -2016\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 2016\qquad\textbf{(D)}\ 4032\qquad\textbf{(E)}\ 6048$

Solution

By: dragonfly

First of all, lets plug in all of the $x$'s into the equation.

$\bigg|$ $||-2016|-(-2016)|-|-2016|$ $\bigg|$ amc竞赛

Then we simplify to get

$\bigg|$ $|2016+2016|-2016$ $\bigg|$ $+2016$

which simplifies into

$\bigg|$ $2016$ $\bigg|$ $+2016$

and finally we get 美国数学竞赛

Problem 4

The ratio of the measures of two acute angles is $5:4$, and the complement of one of these two angles is twice as large as the complement of the other. What is the sum of the degree measures of the two angles?

amc真题

Solution

By: dragonfly

We set up equations to find each angle. The larger angle will be represented as $x$ and the smaller angle will be represented as $y$, in degrees. This implies that

$4x=5y$

and

$2\times(90-x)=90-y$

since the larger the original angle, the smaller the complement.

We then find that $x=75$ and $y=60$, and their sum is 美国数学竞赛amc真题

以上就是小编对AMC12数学竞赛试题及答案的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网