首页> 重点归纳 > AMC数学竞赛真题2016年12B 17

AMC数学竞赛真题2016年12B 17

2018-09-10 重点归纳

AMC12是针对高中学生的数学测验,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。其主要目的在于激发学生对数学的兴趣,参予AMC12的学生应该不难发现测验的问题都很具挑战性,但测验的题型都不会超过学生的学习范围。这项测验希望每个考生能从竞赛中享受数学。那么接下来跟随小编来看一下AMC12官方真题以及官方解答吧:

AMC真题 17

In $\triangle ABC$ shown in the figure, $AB=7$$BC=8$$CA=9$, and $\overline{AH}$ is an altitude. Points $D$ and $E$ lie on sides $\overline{AC}$ and $\overline{AB}$, respectively, so that $\overline{BD}$ and $\overline{CE}$ are angle bisectors, intersecting $\overline{AH}$ at $Q$ and $P$, respectively. What is $PQ$?

amc真题

amc真题

AMC真题解答1

Get the area of the triangle by heron's formula:amc真题Use the area to find the height AH with known base BC:amc真题\[AH = 3\sqrt{5}\]\[BH = \sqrt{AB^2 - AH^2} = \sqrt{7^2 - (3\sqrt{5})^2} = 2\]amc真题Apply angle bisector theorem on triangle $ACH$ and triangle $ABH$, we get $AP:PH = 9:6$ and $AQ:QH = 7:2$, respectively. To find AP, PH, AQ, and QH, apply variables, such that $AP:PH = 9:6$ is $\frac{3\sqrt{5} - x}{x} = \frac{9}{6}$ and $AQ:QH = 7:2$ is $\frac{3\sqrt{5} - y}{y} = \frac{7}{2}$. Solving them out, you will get $AP = \frac{9\sqrt{5}}{5}$$PH = \frac{6\sqrt{5}}{5}$$AQ = \frac{7\sqrt{5}}{3}$, and $QH = \frac{2\sqrt{5}}{3}$. Then, since $AP + PQ = AQ$ according to the Segment Addition Postulate, and thus manipulating, you get amc真题 =amc真题

AMC真题解答 2

Let the intersection of $BD$ and $CE$ be the point $I$. Then let the foot of the altitude from $I$ to $BC$ be $I'$. Note that $II'$ is an inradius and that $II' \cdot s = [ABC]$, where $s$ is the semiperimeter of the triangle.

Using Heron's Formula, we see that $II' \cdot 12 =  \sqrt{12 \cdot 3 \cdot 4 \cdot 5} = 12\sqrt{5}$, so $II' = \sqrt{5}$.

Then since $II'$ and $AH$ are parallel, $\triangle CI'I \sim \triangle CHP$ and $\triangle BHQ \sim \triangle BI'I$.

Thus, $\frac{II'}{PQ + QH} = \frac{CI'}{CH}$ and $\frac{II'}{QH} = \frac{BI'}{BH}$, so amc真题.

By the Dual Principle, $CI' = 5$ and $BI' = 3$. With the same method as Solution 1, $CH = 6$ and $BH = 2$. Then $PQ  = \frac{8}{15} II' =$\[\boxed{\textbf{(D)}\frac{8}{15}\sqrt{5}}\]

AMC真题解答3 (if you're running short on time)

$PQ$ lies on altitude $AH$, which we find to have a length of $3\sqrt{5}$ by Heron's Formula and dividing twice the area by $BC$. From H we can construct a segment $HX$ with $X$ on $CE$ such that $HX$ is parallel to $EB$. A similar construction gives $Y$ on $BD$ such that $HY$ is parallel to $DC$. We can hence generate a system of ratios that will allow us to find $PQ/AH$. Note that such a system will generate a rational number for the ratio $PQ/AH$. Thus, we choose the only answer that has a $\sqrt{5}$ term in it, giving us $\textbf{D}$.

以上就是小编对AMC真题及答案的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网