2018-11-06 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
A quadrilateral is inscribed in a circle of radius . Three of the sides of this quadrilateral have length . What is the length of the fourth side?
To save us from getting big numbers with lots of zeros behind them, let's divide all side lengths by for now, then multiply it back at the end of our solution.
Construct quadrilateral on the circle with being the missing side (Notice that since the side length is less than the radius, it will be very small on the top of the circle). Now, draw the radii from center to and . Let the intersection of and be point . Notice that and are perpendicular because is a kite.
We set lengths equal to . By the Pythagorean Theorem,
We solve for :
By Ptolemy's Theorem,
Substituting values,
Finally, we multiply back the that we divided by at the beginning of the problem to get .
Let quadrilateral be inscribed in circle , where is the side of unknown length. Draw the radii from center to all four vertices of the quadrilateral, and draw the altitude of such that it passes through side at the point and meets side at the point .
By the Pythagorean Theorem, the length of is
Note that Let the length of be and the length of be ; then we have that
Furthermore,
Substituting this value of into the previous equation and evaluating for , we get:
The roots of this quadratic are found by using the quadratic formula:
If the length of is , then quadrilateral would be a square and thus, the radius of the circle would be
Which is a contradiction. Therefore, our answer is
Construct quadrilateral on the circle with being the missing side (Notice that since the side length is less than the radius, it will be very small on the top of the circle). Now, draw the radii from center to and . Apply law of cosines on ; let . We get the following equation:
Substituting the values in, we get
Canceling out, we get
Because , , and are congruent, . To find the remaining side (), we simply have to apply the law of cosines to . Now, to find , we can derive a formula that only uses :
Plugging in , we get . Now, applying law of cosines on triangle , we get
Construct quadrilateral on the circle with being the desired side. Then, drop perpendiculars from and to the extended line of and let these points be and , respectively. Also, let . From the Law of Cosines on , we have .
Now, since is isosceles with , we have that . In addition, we know that as they are both equal to and as they are both radii of the same circle. By SSS Congruence, we have that , so we have that , so .
Thus, we have , so . Similarly, , and .
Label AD intercept OB at E and OC at F.
From there, , thus:
because they are both radii of . Since , we have that . Similarly, .
and , so
Let . Let be the center of the circle. Then is twice the altitude of . Since is isosceles we can compute its area to be , hence .
Now by Ptolemy's Theorem we have This gives us:
Since all three sides equal , they subtend three equal angles from the center. The right triangle between the center of the circle, a vertex, and the midpoint between two vertices has side lengths by the Pythagorean Theorem. Thus, the sine of half of the subtended angle is . Similarly, the cosine is . Since there are three sides, and since ,we seek to find . First, and by Pythagorean.
For simplicity, scale everything down by a factor of 100. Let the inscribed trapezoid be , where and is the missing side length. Let . If and are the midpoints of and , respectively, the height of the trapezoid is . By the pythagorean theorem, and . Thus the height of the trapezoid is , so the area is . By Brahmagupta's formula, the area is . Setting these two equal, we get . Dividing both sides by and then squaring, we get . Expanding the right hand side and canceling the terms gives us . Rearranging and dividing by two, we get . Squaring both sides, we get . Rearranging, we get . Dividing by 4 we get . Factoring we get, , and since cannot be negative, we get . Since , . Scaling up by 100, we get .
WLOG, let , and let ABCD be inscribed in a clrcle with radius . We draw perpendiculars from and to , and label the intersections and , respectively. We can see that (because BCFE is a rectangle), and since is clearly greater than 200, and and since , which is part of segment , is an integer, than we conclude that is also an integer or of the form . There is no reason for to be of the form because it seems too arbitrary. The only other integer choice is .
A quick aside -- this problem takes about 90 seconds to solve with an accurate compass and a good ruler. Draw the diagram, to scale, and measure the last side. It becomes clear that the answer is .
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网。
上一篇: AMC数学竞赛真题2016年10A 25
下一篇: AMC考试都适合什么年龄段的学生参加?