首页> 重点归纳 > AMC数学竞赛真题2016年B 5-6

AMC数学竞赛真题2016年B 5-6

2018-11-19 重点归纳

AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:

Problem 5

The mean age of Amanda's $4$ cousins is $8$, and their median age is $5$. What is the sum of the ages of Amanda's youngest and oldest cousins?

AMC美国大学生数学竞赛

Solution

The sum of the ages of the cousins is $4$ times the mean, or $32$. There are an even number of cousins, so there is no single median, so $5$ must be the median of the two in the middle. Therefore the sum of the ages of the two in the middle is $10$. Subtracting $10$ from $32$ produces $\textbf{(D)}\ 22$

Problem 6

Laura added two three-digit positive integers. All six digits in these numbers are different. Laura's sum is a three-digit number $S$. What is the smallest possible value for the sum of the digits of $S$?

AMC数学竞赛报考点

Solution 1

Let the two three-digit numbers she added be $a$ and $b$ with $a+b=S$ and $a<b$. The hundreds digits of these numbers must be at least $1$ and $2$, so $a\ge 100$ and $b\ge 200$.

Say $a=100+p$ and $b=200+q$; then we just need $p+q=100$ with $p$ and $q$ having different digits which aren't $1$ or $2$.There are many solutions, but $p=3$ and $q=97$ give $103+297=400$ which proves that $\boxed{\textbf{(B)}\ 4}$ is attainable.

Solution 2

For this problem, to find the $3$-digit integer with the smallest sum of digits, one should make the units and tens digit add to $0$. To do that, we need to make sure the digits are all distinct. For the units digit, we can have a variety of digits that work. $7$ works best for the top number which makes the bottom digit $3$. The tens digits need to add to $9$ because of the $1$ that needs to be carried from the addition of the units digits. We see that $5$ and $4$ work the best as we can't use $6$ and $3$. Finally, we use $2$ and $1$ for our hundreds place digits.

Adding the numbers $257$ and $143$, we get $400$ which means our answer is 美国数学竞赛AMC有用吗

以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,如果想了解更多关于AMC数学竞赛报考点、AMC美国大学生数学竞赛、美国数学竞赛AMC有用吗以及AMC学习资料等信息请持续关注AMC数学竞赛网