2018-12-03 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
Rectangle
has
and
. Point
lies on
so that
, point
lies on
so that
, and point
lies on
so that
. Segments
and
intersect
at
and
, respectively. What is the value of
?
![[asy]pair A1=(2,0),A2=(4,4); pair B1=(0,4),B2=(5,1); pair C1=(5,0),C2=(0,4); draw(A1--A2); draw(B1--B2); draw(C1--C2); draw((0,0)--B1--(5,4)--C1--cycle); dot((20/7,12/7)); dot((3.07692307692,2.15384615384)); label("$Q$",(3.07692307692,2.15384615384),N); label("$P$",(20/7,12/7),W); label("$A$",(0,4), NW); label("$B$",(5,4), NE); label("$C$",(5,0),SE); label("$D$",(0,0),SW); label("$F$",(2,0),S); label("$G$",(5,1),E); label("$E$",(4,4),N);[/asy]](https://latex.artofproblemsolving.com/5/7/a/57a2c18476876164c4e52112dd2a0aca51aea7f8.png)
![]()
Since the opposite sides of a rectangle are parallel and
due to vertical angles,
. Furthermore, the ratio between the side lengths of the two triangles is
. Labeling
and
, we see that
turns out to be equal to
. Since the denominator of
must now be a multiple of 7, the only possible solution in the answer choices is
.
First, we will define point
as the origin. Then, we will find the equations of the following three lines:
,
, and
. The slopes of these lines are
,
, and
, respectively. Next, we will find the equations of
,
, and
. They are as follows:![]()
![]()
After drawing in altitudes to
from
,
, and
, we see that
because of similar triangles, and so we only need to find the x-coordinates of
and
.
![[asy] pair A1=(2,0),A2=(4,4); pair B1=(0,4),B2=(5,1); pair C1=(5,0),C2=(0,4); pair D1=(20/7,0),D2=(20/7,12/7); pair E1=(40/13,0),E2=(40/13,28/13); pair F1=(4,0),F2=(4,4); draw(A1--A2); draw(B1--B2); draw(C1--C2); draw(D1--D2,dashed); draw(E1--E2,dashed); draw(F1--F2,dashed); draw((0,0)--B1--(5,4)--C1--cycle); dot((20/7,12/7)); dot((3.07692307692,2.15384615384)); dot((20/7,0)); dot((40/13,0)); dot((4,0)); label("$Q$",(3.07692307692,2.15384615384),N); label("$P$",(20/7,12/7),W); label("$A$",(0,4), NW); label("$B$",(5,4), NE); label("$C$",(5,0),SE); label("$D$",(0,0),SW); label("$F$",(2,0),S); label("$G$",(5,1),E); label("$E$",(4,4),N); label("$P'$", (20/7,0),SSW); label("$Q'$", (40/13,0),SSE); label("$E'$", (4,0),S); dot(A1); dot(A2); dot(B1); dot(B2); dot(C1); dot(C2); dot((0,0)); dot((5,4));[/asy]](https://latex.artofproblemsolving.com/f/3/8/f38ddd9b2b43cc8a60e79519667e83c875c1592f.png)
Finding the intersections of
and
, and
and
gives the x-coordinates of
and
to be
and
. This means that
. Now we can find ![]()
![[asy] pair A1=(2,0),A2=(4,4); pair B1=(0,4),B2=(5,1); pair C1=(5,0),C2=(0,4); pair H = (20/3,0); draw(A1--A2); draw(B1--B2); draw(C1--C2); draw(B1--H); draw((0,0)--H); draw((0,0)--B1--(5,4)--C1--cycle); dot((20/7,12/7)); dot((3.07692307692,2.15384615384)); label("$Q$",(3.07692307692,2.15384615384),N); label("$P$",(20/7,12/7),W); label("$A$",(0,4), NW); label("$B$",(5,4), NE); label("$C$",(5,0),SE); label("$D$",(0,0),SW); label("$F$",(2,0),S); label("$G$",(5,1),E); label("$E$",(4,4),N); label("$H$",H,E); [/asy]](https://latex.artofproblemsolving.com/3/b/4/3b455ac7d872c3d7252d88bd682214690b9760cc.png)
Extend
to intersect
at
. Letting
, we have that
Then, notice that
and
. Thus, we see that
and
Thus, we see that ![]()
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,如果想了解更多关于AMC数学竞赛报考点、南京AMC数学竞赛培训、美国数学竞赛AMC有用吗以及AMC学习资料等信息请持续关注AMC数学竞赛网。
上一篇: AMC数学竞赛真题2016年B 20
下一篇: AMC考试都适合什么年龄段的学生参加?