2018-12-17 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
Let
, where
denotes the greatest integer less than or equal to
. How many distinct values does
assume for
?
![]()
Since
, we have

The function can then be simplified into
![\[f(x) = \sum_{k=2}^{10} ( k \lfloor x \rfloor + \lfloor k \{ x \} \rfloor - k \lfloor x \rfloor)\]](/public/uploads/ueditor/20181217/1545017445634006.png)
which becomes

We can see that for each value of k,
can equal integers from 0 to k-1.
Clearly, the value of
changes only when x is equal to any of the fractions
.
So we want to count how many distinct fractions have the form
where
. We can find this easily by computing

where
is the Euler Totient Function. Basically
counts the number of fractions with
as its denominator (after simplification). This comes out to be
.
Because the value of
is at least 0 and can increase 31 times, there are a total of
different possible values of
.
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,如果想了解更多关于AMC数学竞赛报考点、南京AMC数学竞赛培训、美国数学竞赛AMC有用吗以及AMC学习资料等信息请持续关注AMC数学竞赛网。
上一篇: AMC8考试课程如何设置?
下一篇: AMC考试都适合什么年龄段的学生参加?