首页> 重点归纳 > 考题11-12 2017 AMC 8

考题11-12 2017 AMC 8

2018-08-06 重点归纳

AMC 8数学竞赛专为8年级及以下的初中学生设计,但近年来的数据显示,越来越多小学4-6年级的考生加入到AMC 8级别的考试行列中,而当这些学生能在成绩中取得“A”类标签,则是对孩子数学天赋的优势证明,不管是对美高申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC 8的官方真题以及官方解答吧:

Problem 11

A square-shaped floor is covered with congruent square tiles. If the total number of tiles that lie on the two diagonals is 37, how many tiles cover the floor?

考题11-12 2017 AMC 8

Solution

Since the number of tiles lying on both diagonals is $37$, counting one tile twice, there are $37=2x-1\implies x=19$ tiles on each side. Hence, our answer is $19^2=361=\boxed{\textbf{(C)}\ 361}$.

Problem 12

The smallest positive integer greater than 1 that leaves a remainder of 1 when divided by 4, 5, and 6 lies between which of the following pairs of numbers?

考题11-12 2017 AMC 8

Solution

Since the remainder is the same for all numbers, then we will only need to find the lowest common multiple of the three given numbers, and add the given remainder (No fancy Chinese Remainder Theorem) . The $\operatorname{LCM}(4,5,6)$ is $60$. Since $60+1=61$, and that is in the range of $\boxed{\textbf{(D)}\ \text{60 and 79}}.$

以上就是小编对AMC 8数学竞赛官方真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!