2018-08-06 重点归纳
AMC 8数学竞赛专为8年级及以下的初中学生设计,但近年来的数据显示,越来越多小学4-6年级的考生加入到AMC 8级别的考试行列中,而当这些学生能在成绩中取得“A”类标签,则是对孩子数学天赋的优势证明,不管是对美高申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC 8的官方真题以及官方解答吧:
In the arrangement of letters and numerals below, by how many different paths can one spell AMC8? Beginning at the A in the middle, a path allows only moves from one letter to an adjacent (above, below, left, or right, but not diagonal) letter. One example of such a path is traced in the picture.
Notice that the is adjacent to s, each is adjacent to s, and each is adjacent to s. Thus, the answer is
There are three different kinds of paths that are on this diagram. The first kind is when you directly count A, M, C in a straight line. The second is when you count A, turn left or right to get M, then go straight to count M and C. The third is the one where you start with A, move forward to count M, turn left or right to count C, then move straight again to get 8.
There are 8 paths for each kind of path, making for paths.
In the figure below, choose point on so that and have equal perimeters. What is the area of ?
Essentially, we see that if we draw a line from point A to imaginary point D, that line would apply to both triangles. Let us say that is the length of the line from B to D. So, the perimeter of would be , while the perimeter of would be . Notice that we can find out from these two equations. We can find out that , so that means that the area of
We know that the perimeters of the two small triangles are and . Setting both equal and using , we have and . Now, we simply have to find the area of . Since , we must have . Combining this with the fact that , we get
Since point is on line , it will split it into and . Let and . Triangle has side lengths and triangle has side lengths . Since both perimeters are equal, we have the equation . Eliminating and solving the resulting linear equation gives . Draw a perpendicular from point to . Call the point of intersection . Because angle is common to both triangles and , and both are right triangles, both are similar. The hypotenuse of triangle is 2, so the altitude must be Because and share the same altitude, the height of therefore must be . The base of is 4, so
Using any preferred method, realize . Since we are given a 3-4-5 right triangle, we know the value of . Since we are given , apply the Sine Area Formula to get .
以上就是小编对AMC 8数学竞赛官方真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!
上一篇: 考题17-18 2017 AMC 8
下一篇: AMC考试都适合什么年龄段的学生参加?