首页> 重点归纳 > 考题17-18 2017 AMC 8

考题17-18 2017 AMC 8

2018-08-06 重点归纳

AMC 8数学竞赛专为8年级及以下的初中学生设计,但近年来的数据显示,越来越多小学4-6年级的考生加入到AMC 8级别的考试行列中,而当这些学生能在成绩中取得“A”类标签,则是对孩子数学天赋的优势证明,不管是对美高申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC 8的官方真题以及官方解答吧:

Problem 17

Starting with some gold coins and some empty treasure chests, I tried to put 9 gold coins in each treasure chest, but that left 2 treasure chests empty. So instead I put 6 gold coins in each treasure chest, but then I had 3 gold coins left over. How many gold coins did I have?

$\textbf{(A) }9\qquad\textbf{(B) }27\qquad\textbf{(C) }45\qquad\textbf{(D) }63\qquad\textbf{(E) }81$

Solution

We can represent the amount of gold with $g$ and the amount of chests with $c$. We can use the problem to make the following equations:

\[9c-18 = g\]\[6c+3 = g\]

Therefore, $6c+3 = 9c-18.$ This implies that $c = 7.$ We therefore have $g = 45.$ So, our answer is $\boxed{\textbf{(C)}\ 45}$.

Problem 18

In the non-convex quadrilateral $ABCD$ shown below, $\angle BCD$ is a right angle, $AB=12$$BC=4$$CD=3$, and $AD=13$.

[asy]draw((0,0)--(2.4,3.6)--(0,5)--(12,0)--(0,0)); label(

What is the area of quadrilateral $ABCD$?

$\textbf{(A) }12\qquad\textbf{(B) }24\qquad\textbf{(C) }26\qquad\textbf{(D) }30\qquad\textbf{(E) }36$

Solution

We first connect point $B$ with point $D$.

[asy]draw((0,0)--(2.4,3.6)--(0,5)--(12,0)--(0,0)); draw((0,0)--(0,5)); label(

We can see that $\triangle BCD$ is a 3-4-5 right triangle. We can also see that $\triangle BDA$ is a right triangle, by the 5-12-13 Pythagorean triple. With these lengths, we can solve the problem. The area of $\triangle BDA$ is $\frac{5\cdot 12}{2}$, and the area of the smaller 3-4-5 triangle is $\frac{3\cdot 4}{2}$. Thus, the area of quadrialteral $ABCD$ is $30-6 = \boxed{\textbf{(B)}\ 24}.$

以上就是小编对AMC 8数学竞赛官方真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网